Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
Small ; : e2203309, 2022 Aug 29.
Article in English | MEDLINE | ID: covidwho-2013793

ABSTRACT

Inexpensive yet sensitive and specific biomarker detection is a critical bottleneck in diagnostics, monitoring, and surveillance of infectious diseases such as COVID-19. Multiplexed detection of several biomarkers can achieve wider diagnostic applicability, accuracy, and ease-of-use, while reducing cost. Current biomarker detection methods often use enzyme-linked immunosorbent assays (ELISA) with optical detection which offers high sensitivity and specificity. However, this is complex, expensive, and limited to detecting only a single analyte at a time. Here, it is found that biomarker-bound enzyme-labeled probes act synergistically with nanostructured catalytic surfaces and can be used to selectively reduce a soluble silver substrate to generate highly dense and conductive, localized surface silver metallization on microelectrode arrays. This enables a sensitive and quantitative, simple, direct electronic readout of biomarker binding without the use of any intermediate optics. Furthermore, the localized and dry-phase stable nature of the metallization enables multiplexed electronic measurement of several biomarkers from a single drop (<10 µL) of sample on a microchip.This method is applied for the multiplexed point-of-care (POC) quantitative detection of multiple COVID-19 antigen-specific antibodies. Combining a simple microchip and an inexpensive, cellphone-interfaced, portable reader, the detection and discrimination of biomarkers of prior infection versus vaccination is demonstrated.

2.
Cell Rep ; 39(13): 111020, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1885675

ABSTRACT

While there have been extensive analyses characterizing cellular and humoral responses across the severity spectrum in COVID-19, outcome predictors within severe COVID-19 remain less comprehensively elucidated. Furthermore, properties of antibodies (Abs) directed against viral antigens beyond spike and their associations with disease outcomes remain poorly defined. We perform deep molecular profiling of Abs directed against a wide range of antigenic specificities in severe COVID-19 patients. The profiles included canonical (spike [S], receptor-binding domain [RBD], and nucleocapsid [N]) and non-canonical (orf3a, orf8, nsp3, nsp13, and membrane [M]) antigenic specificities. Notably, multivariate Ab profiles directed against canonical or non-canonical antigens are equally discriminative of survival in severe COVID-19. Intriguingly, pre-pandemic healthy controls have cross-reactive Abs directed against nsp13, a protein conserved across coronaviruses. Consistent with these findings, a model built on Ab profiles for endemic coronavirus antigens also predicts COVID-19 outcome. Our results suggest the importance of studying Abs targeting non-canonical severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and endemic coronavirus antigens in COVID-19.


Subject(s)
COVID-19 , Antibodies, Viral , Humans , Pandemics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL